Deriving Escape Velocity

We can derive escape velocity from Newton’s gravity force law:

\[F = -G \cdot \frac{m_1 \cdot m_2}{r^2} \]

If we replace force \(F \) with the classic definition of Newton’s second law \(m \cdot a \), then we get:

\[m_1 \cdot a = -G \cdot \frac{m_1 \cdot m_2}{r^2} \]

Cancelling terms, we have the general equation for the radial (centripetal) acceleration of a single, point mass (here we replace \(m_2 \) with \(m \)):

\[a = -G \cdot \frac{m}{r^2} \]

Escape velocity is the velocity that lets us leave the surface of a mass and never return. This means that we always have a positive radial velocity and that radial velocity only approaches zero as distance from the mass approaches infinity. We obtain escape velocity by integrating this equation with respect to \(r \) from \(r = r_{\text{surface}} \) to \(r = \infty \):

\[\int_{r=r_{\text{surface}}}^{r=\infty} a \cdot dr = \int_{r=r_{\text{surface}}}^{r=\infty} -G \cdot \frac{m}{r^2} \cdot dr \]

The expression on the right-hand side is straightforward; however, the expression on the left-hand side requires some adjustment. We start by replacing acceleration \(a \) with its definition: \(\frac{dv}{dt} \)

\[\int_{r=r_{\text{surface}}}^{r=\infty} \frac{dv}{dt} \cdot dr = \int_{r=r_{\text{surface}}}^{r=\infty} -G \cdot \frac{m}{r^2} \cdot dr \]

Rearranging we get:

\[\int_{r=r_{\text{surface}}}^{r=\infty} \frac{dr}{dt} \cdot dv = \int_{r=r_{\text{surface}}}^{r=\infty} -G \cdot \frac{m}{r^2} \cdot dr \]

The derivative \(\frac{dr}{dt} \) is simply velocity \(v \). This now gives us:

\[\int_{r=r_{\text{surface}}}^{r=\infty} v \cdot dv = \int_{r=r_{\text{surface}}}^{r=\infty} -G \cdot \frac{m}{r^2} \cdot dr \]
To complete the adjustment, we must alter the limits of integration for the change of variable. At
\(r = r_{\text{surface}} \) we have \(v = v_{\text{escape}} \); and for \(r = \infty \), we have \(v = 0 \), the definition of an escape velocity at
infinity. This final change gives us:

\[
\int_{v = v_{\text{escape}}}^{v = 0} v \cdot dv = \int_{r = r_{\text{surface}}}^{r = \infty} -G \cdot \frac{m}{r^2} \cdot dr
\]

Which we now integrate:

\[
\frac{1}{2} \cdot v^2 \bigg|_{v = v_{\text{escape}}}^{v = 0} = G \cdot \frac{m}{r} \bigg|_{r = \infty}^{r = r_{\text{surface}}}
\]

And evaluate:

\[
0 - \frac{1}{2} \left(v_{\text{escape}} \right)^2 = 0 - G \cdot \frac{m}{r_{\text{surface}}}
\]

And solve for \(v_{\text{escape}} \):

\[
v_{\text{escape}} = \sqrt{\frac{2 \cdot G \cdot m}{r_{\text{surface}}}}
\]

This is the standard equation for escape velocity.